
AA
year ago, I wrote an article enti-
tled “The Common Desktop
Environment” (June 1996, Page

22) in which I discussed the basics of the
Common Desktop Environment (CDE).
I’ve been meaning to do a follow-up article
on CDE actions ever since then. As a key
part of CDE, the Action mechanism is
used to translate mouse clicks on objects
sitting on the screen into running applica-
tions doing the work that you need.

Actually, as a beginning user, you are
not really aware of the Action system,
even though it underpins much of what
is happening in the CDE. If you click on
the front-panel icon that is a file cabinet
drawer with some tools peeking out, you
are presented with a window titled
Application Manager. The Application
Manager seems somewhat unspectacular.
It looks exactly the same as the regular
file browser, so you may not think much
of it. Well, it is the file browser, but it’s
opened at a “secret” directory that was
created when your CDE session started.
This directory contains a set of symbolic

links that collect pointers to several
directories, each holding a set of actions.

On the default system setup, the
Application Manager window will
contain five folders: Desktop_Apps ,
Desktop_Tools , Information ,
OpenWindows and System_Admin . If
you look in the Desktop_Apps folder,
you’ll find some icons that you will have
seen on the CDE front panel. There are
also some icons that are not loaded into
the default setup.

The Desktop_Tools folder contains
many icons: Several map onto familiar
UNIX commands; several are unfamiliar
and new. Some of the new actions provide
you with information about aspects of the
CDE; others can be used to manage your
CDE environment.

The OpenWindows folder contains
actions that invoke OpenWindows
commands, many of which have been
replaced by CDE commands. However,
this folder allows you to access the older
code should you wish to use it. The
Information folder should have an

icon that starts the online Answerbook
documentation and will contain some
text files. The Information and
System_Admin folders are intended to
be used by local systems administrators
to provide you with local information
and commands.

If you want to use any of the appli-
cations that you will find under the
Application Manager, such as the Calc-
ulator, then you can double-click on the
appropriate icon to start the program
running. Some of the applications take
arguments and may give you a dialog box
so you can supply appropriate text. You
can also drag-and-drop a file onto an icon
to start the program running with the
dropped file as an argument.

If you are a frequent Calculator user,
then you might want to place the icon in
a more accessible place. One alternative
is to drag the icon onto the desktop and
park it somewhere convenient. On the
desktop, the icon behaves as before, so
you can double-click or drag-and-drop
as appropriate.

M
IC

HE
LL

E
FR

IE
SE

NH
AH

N
W

IL
BY

UNIX Basics
by Peter Collinson, Hillside Systems

30 SunExpert Magazine ■ June 1997

Customizing CDE

UNIX Basics
Another alternative is to place

the icon into the front panel. By
now, you will have discovered
that each section in the front
panel can have a pop-up menu
(see Figure 1). You can add a
pop-up menu to an unused
section of the front panel by
clicking with the right mouse
button on the icon sitting in that
area of the front panel and then
selecting Add Subpanel . Each
pop-up menu has a drop-zone at the top, titled Install Icon ,
and dropping an application icon into the drop-zone will add
the action to that menu. The icon is added to the bottom of
the list of actions in the menu, so if you want to impose some
ordering on the contents, you have to be circumspect when
building the menu.

Once you have more than one icon installed on a menu,
you can choose which one is displayed as the “top icon” on the
front panel by clicking the right button on the item when the
menu is popped up. So the applications that you use most can
be just a click away. I’ve started this process in Figure 1. I’ve
added a subpanel to the Applications section and loaded
the Calculator into it.

Adding Actions
Actions consist of two files: an Action Definition File and an

Action File. The Action Definition File contains a text specifi-
cation giving the name and properties of the action. The file is
always named something.dt . CDE recognizes the file by looking
for the name. The Action Definition File can hold several
actions and may also house specifications for any data files that
are associated with the action. These specifications define a
datatype. Double-clicking on a file that matches the criteria
given in a datatype can then invoke the appropriate action.

The contents of the Action File are irrelevant. If you look, it’s
usually a shell script that echoes a helpful message when run in
the shell. The Action File is there to provide a name in the file
system that has the same name as an Action Definition. When
the Action File is selected using a double-click in a CDE appli-
cation, its file name is used to invoke the associated action.

You can invoke actions from the standard shell by using the
dtaction command. It occurs to me that the Action File
could use the command so that the file would become useful
in the shell as well as CDE. It seems possible to add

dtaction `basename $0` $*

to the end of the Action File. The idea seems to work, and I
don’t know why it’s not done by default.

The standard place to find the system Action Definition Files
is /usr/dt/appconfig/types/C . The set of Action Files that
map onto entries in the Application Manager is /usr/dt/

appconfig/appmanager/C . The “C” here is the locale.
You may have some local systemwide Action Definitions

stored in /etc/dt/appconfig/types , with associated

Action Files stored in a subdirectory of /etc/dt/appconfig/

appmanager . In general, local systemwide aspects of the CDE
can be stored in appropriate locations in /etc/dt , so you can
make local changes without compromising the ability to update
the CDE main tree at a later date.

When you define your own personal actions, their definition
files will be stored in ~/.dt/types in your home directory
(I am using the standard tilde notation to indicate your home
directory). You can also create subdirectories in ~/.dt/

appmanager that will hold your private action files. You will
recall that I said the Application Manager is an instance of the
File Manager that is started looking at a directory of symlinks
that point to application directories. Well, the CDE start-up
code will look in the /etc/dt/appmanager and your private
~/.dt/appmanager directory to find local applications and
will provide a symbolic link to any directories that it may find
there, so local and private applications will be available to you
in a coherent folder structure in the Application Manager.

The easiest way to create your own actions is to use the
Create Action tool that you will find in the Application
Manager’s Desktop_Apps folder. The command can only
make simple Action Definition Files, but I’ve found that it’s a
good way to start. Figure 2 shows me creating an action to run
the Netscape program. I’ve typed in the name of the action,
the command that will be used to run the action, and some
text that will be invoked when the Help menu is selected for
the action. I’ve extended the window to show the Advanced

settings. These are not used at the moment.
I’ve selected a set of icons that will be used. You don’t have

to create a new bitmap set from scratch for every application.
The system comes equipped with many bitmap sets that can
often give you something that is appropriate for the task in
hand. However, for Netscape, using its own icon is the right
thing to do, and I’ve made my own icon set.

CDE uses four sizes of icons in different circumstances,
depending on context and also the resolution of your screen.
Consult your documentation for details on sizes and the
naming convention that you must follow. I created the Net-
scape icon set by taking the Netscape icon from a screenshot,
editing the bitmap down to size with the Image Viewer and
then creating icons with the Icon Editor.

The four bitmap files are stored in the ~/.dt/icon using
the standard icon naming convention. Actually, you’ll find that
the Icon Editor cannot see a directory called ~/.dt . It ignores
“hidden” directories, which is somewhat inconvenient. I have a

32 SunExpert Magazine ■ June 1997

Figure 1. Adding an action to the CDE front panel.

34 SunExpert Magazine ■ June 1997

symbolic link called icons in my home directory to sidestep
this problem.

As you can see, setting up a simple action is trivial.
Selecting Save from the File menu will save the action.
Two files are created: Netscape.dt is the Action Definition
File and will be placed in your ~/.dt/types directory. The
Action File, Netscape , will be put in your home directory.
Once you have finished creating and testing, you can move
it to your ~/.dt/appmanager/personal directory. You
should do the move before you incorporate the action into
the front panel, because the front panel definition file
contains the pathname of the Action File.

To ensure that the action is registered, you need to find the
Reload Actions icon in the Application Manager. When
I’m developing actions, I drag the icon onto the desktop for
convenience. I find that I use it several times, and having it in
a handy place saves time. Also, I seem to get buggy side effects
with the icons on the front panel when I use the Reload

Actions tool. Using the Reload Workspace option on
the desktop right-button menu usually fixes the problem. I
tend to reload the workspace or log out when I have finished
the development process. Also, I have a SPARCstation 2
(once considered a really fast machine), and it can take some
time for a Reload Actions to percolate around the various
open windows. So remember, on some machines, patience is
a virtue.

Because the new Action File is stored in your home direc-
tory, you will now have to start the File Manager and, hope-
fully, you will see the file sporting the Netscape icon. Double-
clicking on the icon will start the program.

Before moving on, let’s look at the contents of ~/.dt/

types/Netscape.dt :

ACTION Netscape

{

LABEL Netscape

TYPE COMMAND

EXEC_STRING /usr/local/bin/netscape

ICON netscape

WINDOW_TYPE NO_STDIO

DESCRIPTION Run Netscape Navigator

}

There’s actually a bunch of comments before the text, giving you
dire warnings about editing this file by hand. The first line
provides the action name, and the braces enclose various attri-
butes of the action. The attributes are fairly self-explanatory and
are derived directly from the Create Action GUI.

Arguments
Well, the action I’ve just made may seem good enough to

you. However, it would be nice to be able to open Netscape
with a URL that you type in. Also, more and more documen-
tation is being distributed as HTML files, and you may want to
run Netscape with an argument that is an HTML file. Before
we start looking at this possibility, change into ~/.dt/types

and save the Netscape.dt file by copying it to some other

name. We’ll use its contents later.
All you need to do to give the action an argument is to

change the Command when Action is Opened field to

/usr/local/bin/netscape $1

and save the action. Execute Reload Actions and wait for
the activity light to stop flashing. Patience. Now you’ll find
that if you double-click on the Netscape icon, you should see
the program run as before. Also, if you find an HTML file and
drop it onto the icon, the page will be displayed.

Take a look at the Action Definition File. You’ll notice that
the command line has changed to

EXEC_STRING /usr/local/bin/netscape %Arg_1%

I found the use of dollar variables very confusing at first.
The Create Action GUI translates the $1 into the
internal form used by the CDE Action system. If you are
creating actions by hand, then you must use the correct
internal form. We’ll see why there is a translation process
when we look at the next step.

The action we have created doesn’t do quite what we want.
We’d like to be able to ask the user for a URL or a file. They
will type the name into a dialog box. To provide a dialog box
with a prompt, we fill in the When Action Opens box in the

UNIX Basics

Figure 2. To create an action to run the Netscape program,
I’ve typed in the name of the action, the command that will
run the action, and some Help text for that action.

36 SunExpert Magazine ■ June 1997

UNIX Basics

Advanced section of the GUI. Type URL: into the box.
Again we will save the file, reload the actions and wait for all
that system stuff. Now when we double-click on the icon, we’ll
get a dialog box that shows the prompt string. If you type the
name of a file containing HTML into the box, you will get
Netscape to start looking at that file. You can achieve the same
result if you drag-and-drop a file onto the Netscape icon.

The command line in the Action Definition File now
looks like

EXEC_STRING /usr/local/bin/netscape %Arg_1"URL:"%

and you can see how the Create Action GUI has massaged
the $1 into the correct internal form. The string in the quotes
is the prompt that we supplied.

What happens if we double-click on the icon and type a
URL into the dialog box? Here, we hit a snag. With the
argument specification shown above, the system assumes we
are dealing with a file. It will attempt to expand the string to a
full pathname and will object when it cannot find the path.
CDE expands file arguments to full pathnames and so avoids
having to specify files relative to the current working directory
of the application. The application’s working directory is
usually very different from the working directory of the user.
So it’s hard to deal with an argument that may be either a file

or a URL. There are solutions to the problem, but they have
other side effects. As we shall see, perhaps we are prepared to
live without the ability anyway.

Datatypes
We now have an action that is represented by an icon on

the screen. We can start the application with an argument
by dropping a suitable file onto the icon. We can double-
click on the icon and start the program with a file, supplying
the file name in a dialog box. We can run it with no argu-
ments by selecting OKon the dialog box when its text field
is empty. However, it is a nice touch to be able to wander
around the file system, see an .html file and double-click
on it to start Netscape looking at that file. Providing click-
able files is done by creating a datatype that associates actions
with a file type.

We can add datatypes to the current action by clicking the
Add button in the Create Action GUI. The Add Datatype

dialog box will pop up (shown in Figure 3). The top entry, the
name, is filled in automatically, but we can change it if we like.
I’ve filled in the Identifying Characteristics box by
hitting the Edit button and filling in the dialog screen that is
produced. The system provides several different methods for
identifying a file type. We can match a name using shell file
name expansion expressions, which is what I have done here.
We can also select files or directories, look at the access permis-
sions set on the file, or even examine the contents of the file.

Next, we select an icon to be used when a file of this type
is identified by the File Manager. I’ve used the Netscape icon
again. The Commandfield was filled in automatically by the
program. The final line is left blank, because we use Netscape
to print HTML files.

Again, we save the action and reload. An HTML file in the
system that is named something.html will appear with the
Netscape icon, and double-clicking on the icon should result
in Netscape starting up and loading that page.

You can have several different file types mapping onto the
same action, so a repeat of the process above using *.htm as
the match string will make the system work for HTML files
that are constrained by the DOS naming convention.

Pulling It Together
We’ve gone as far as we can with the Create Action

GUI. To make things hang together in a slightly more natural
way, we need to edit the Action Definition File, and the GUI
will refuse to edit the file once we have done that.

You will have noticed that our first attempt with the Create

Action GUI gave us an icon that we could double-click to start
Netscape. Along the way, we’ve lost that simple double-click
ability and now are always are presented with a dialog box. The
dialog box is somewhat unfriendly because it doesn’t include a
file browser. If we want to start Netscape looking at a particular
file, it’s probably better to use the File Manager to find the file,
which is now a datatype and can be double-clicked to start
Netscape. Getting rid of the dialog box also neatly sidesteps
the issue of starting Netscape via a URL. We can just start
the program, and the user can type their URL into it.

Figure 3. We can
add datatypes to
the current action
by clicking the Add
button in the Create
Action GUI. The
Add Datatype
dialog box will pop
up (shown here).

So we want to take different actions depending on the
number of arguments. There will be two cases: no argu-
ments when the Netscape action is double-clicked; and
an argument when a file is dropped on the icon or when a
datatyped HTML file is double-clicked. You can also drag-
and-drop several files.

We can make our Action Definition File contain more than
one action called Netscape and choose which one to use
depending on various criteria, one of which is the number of
arguments. It’s easy. Pick up the ACTIONdefinition for Netscape
that I suggested you save earlier and edit it into your current
definition file before the current ACTION line. Inside the curly
braces for the inserted ACTIONadd

ARG_COUNT 0

You now have two actions called Netscape , the first will be
called when the Netscape icon is double-clicked and there are
no arguments, the second when there are some associated
data files.

We’d also like to deal with the problem of file context.
CDE will call Netscape with the full pathname of a data file
that is loaded, but ideally we would like Netscape to be run-
ning with its current directory in the same directory as the
data file. Images and links from the HTML page can then be
expressed relative to the page, and we will be presented with
a page from a disk that should show the correct information.
So we’d like to change directory before Netscape is called.

I tend to tackle this type of problem by making the
Action call a shell script. The script looks at its arguments,
and then calls the target program. We create a shell script
called call_netscape like

#!/bin/sh

if [$# -gt 0] then
for name in $*
do

case $name in
-*) ;;

*)
cd `dirname $name`
break

esac
done

fi
exec /usr/local/bin/netscape -install $*

The script examines its arguments. It seems good practice to
ignore any argument that is a program option starting with a
minus sign. When it finds an argument, it assumes that it’s a
file name and uses the dirname command to generate its
path. It calls cd to change into the directory. Finally, the
Netscape program is called.

Notice that I’ve called Netscape here using the -install

flag to ensure that it allocates a private colormap. A private map
is always good practice, because the program tends to be greedy
with colormap resources. I’ve omitted the -install flag from
the examples above to avoid having to explain it until now.

More Reading
I’ve derived most of the information herein from the

Solaris CDE Answerbook 1.0. The Answerbook should be
online on your system. If not, you should ask your systems
administrator for it.

There are several printed books that describe CDE, but
the ones that look reasonable are often printed versions of
the information already available to you in the Answerbook.
So, unless you want the information on paper, these books
are not going to tell you anything new. I think that on the
whole, the CDE documentation is somewhat impenetrable.
There’s nothing on how it works. You have to make best
guesses from the available evidence. I suppose that what you
need to know to use CDE is often there, but somehow it’s
presented in a way that doesn’t make it too accessible.

The scripts, icons and actions described in this article are
available on my Web site: http:/www.hillside.co.uk/

articles/sunexpert.html. Look for the section on this
article for further links. ✒

Peter Collinson runs his own UNIX consultancy,
dedicated to earning enough money to allow him to
pursue his own interests: doing whatever, whenever,
wherever… He writes, teaches, consults and programs
using Solaris running on a SPARCstation 2. Email:
pc@cpg.com.

SunExpert Magazine ■ June 1997 39

UNIX Basics

	Customizing CDE
	Adding Actions
	Arguments
	Datatypes
	Pulling It Together
	More Reading

